Data is omnipresent. Everywhere we go, we encounter it, in our business transactions, subscription lists, email, etc.
To put the growth of data in perspective, every 18 months the processing capacity of the world doubles, but at the same time data has been doubling every nine months. So if an enterprise uses a straightforward approach to processing the data, it’ll never keep up. Organizations need next-generation approaches to reduce the data and extract the necessary information. Which is where data mining comes in.
“Data mining uses algorithms to fish through data structures and find you interesting things such as statistical patterns, predictive models, interesting correlations, affinities, etc.,” said Dr. Usama Fayyad, CEO and co-founder of digiMine, a data mining services vendor. “It’s not about human beings doing it. The reason is that for most large data sets, human beings are not very effective. If you have from one to three variables, people are very good at what we call low dimensions. You can plot the data, leverage your visual system and understand a lot about the data, often much more than an algorithm can understand.”
“But the minute you take that number of variables to anything over five or six, humans go from being amazingly good to amazingly bad. When you get into the realm of tens, hundreds and thousands of variables, you need to rely on the algorithm to help you sift through the data. When you have a lot of information about a client, this forms a very high-dimensional space. Taking that data and culling information that is going to be helpful and predictive, such as what the person will buy next, is a very difficult problem. If you leave it to humans to get stuff from the data, they get nowhere.”
When looking at the links below, it’s important to be aware of a few facts. While there are many data mining tools available, they need to be in a language that the user can understand. If you don’t have a thorough knowledge of data mining or statistics, these tools are not for you. In this case, you would be advised to look at the list of software solutions that embed the data mining inside the application.
And in the event that you don’t want to do any data mining within your company, you can make use of a managed service model which will do the data mining for you. Such a service is available from digiMine.
The first category contains links to tools designed for data mining experts. Using this software, you would need a data warehouse infrastructure in place.
In this category, data mining is embedded in the database platform for specialized database and mining managers.
This category concerns embedding data mining solutions as a part of business applications, often Customer Relationship Management (CRM). Employing data mining in this context makes it easier for users to learn. However, one would still require expertise and a data warehousing infrastructure, though the mining would take place within a business context.
Parting Remarks
What many people don’t realize is how difficult it can be to use data mining within their business enterprise. Another issue is not knowing if data mining will be useful to your business or not. If your enterprise is relatively small, data mining is not likely to be in your best interests. If your business has a limited amount of data, it would be wise to look for opportunities within the data, such as buying trends or fitting customers to different products.
Also, as Fayyad noted, SQL, the language of databases, has proven to be the wrong interface, partly because it cannot handle natural-language queries. SQL was designed to address problems where you know the target and you want the database to quickly retrieve the result. Without an exact description, youre lost. This is one area that could use substantial improvement.
As time goes on, data mining is likely to become part of larger applications, but it unlikely that data mining will become a consumer product; the intricacies of the technology are too specialized for that. It is difficult to predict how data mining will evolve, but it is likely that the service component for the industry will continue to grow.
Additional Resources
The Data Mining Group(DMG) is an independent group that develops data mining standards, including the Predictive Model Markup Language (PMML).
According to information on the web site: “PMML is an XML mark up language to describe statistical and data mining models. It describes the inputs to data mining models, the transformations used prior to prepare data for data mining, and the parameters which define the models themselves. Uses include finance, e-business, direct marketing, manufacturing, and defense.”
PMML is used by IBM, Oracle, SPSS, Magnify, Angoss, Mineit, etc., with further releases planned. At this point, it is the most widely deployed data mining standard. PMML is part of XML.org.
Ethics and Artificial Intelligence: Driving Greater Equality
FEATURE | By James Maguire,
December 16, 2020
AI vs. Machine Learning vs. Deep Learning
FEATURE | By Cynthia Harvey,
December 11, 2020
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2021
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.