Datamation content and product recommendations are
editorially independent. We may make money when you click on links
to our partners.
Learn More
With the number of chips per server and cores per chip increasing, future generations of servers may end up with way more processing power than the computer could possibly utilize, even under virtualization, Gartner has found. The research firm issued a report on the issue earlier this week.
This doubling and doubling again of cores will drive the servers well above the peak levels for which software systems are engineered. That includes operating systems, middleware, virtualization tools and applications. The result could be a return to servers with single-digit utilization levels.
The problem is that the computer industry resides and depends on constant upgrades. It’s not like consumer electronics, for example, where stereo technology remained unchanged for decades. The computer industry is driven by Moore’s Law (define), and that means Intel has to keep selling chips and OEMs have to keep selling servers.
“Their whole business model is driven on delivering more for the same price,” said Carl Claunch, vice president and distinguished analyst at Gartner. “They have to keep delivering on the refresh rate, and you have to be constantly delivering something new.”
And fast chips are more glamorous than working on the subsystem, which has lagged when compared to processor performance. Memory and I/O buses are much slower than the CPU, causing bottlenecks on a single PC. On a virtualized system, it can be even worse.
So with Intel (NASDAQ: INTC) flooring the gas pedal on driving new products, vendors like IBM (NYSE: IBM), Dell (NYSE: DELL) and HP (NYSE: HPQ) have no choice but to follow to get revenue from product refresh sales. “When someone does take their foot off the gas it will be a train wreck, because so much is dependent on that rate of refresh and speed of improvement,” said Claunch.
Ed Turkel, manager of the Scalable Computing & Infrastructure unit at HP, seemed to concur. “Due to the more compute power available with multi-core systems, the applications may need to be re-implemented to fully take advantage of the compute power available to them,” he said in an e-mail to InternetNews.com.
“This issue is commonplace in high performance computing today, but we will start to see this as an issue in other segments. For instance, virtualization environments will also need to become more multi-core-aware, perhaps creating virtual machines that virtualize multiple cores into a single machine that hides this added complexity.”
Sockets, chips and cores, oh my!
Currently, the most popular server motherboards have two to four sockets, with dual socket being the most popular, according to Intel. Anything above four sockets is labeled as a “multi processor” (MP) server, but those are very rare and only used in extremely high-end systems, accounting for single-digit market share.
It gets even more confusing on the processor side, as the return of multithreading in Intel’s Core i7 (“Nehalem”) means one core appears as two when running two separate threads.
So far, Intel has launched the six-core Xeon and AMD has a six-core Opteron in the works. Intel plans for an eight-core Core i7 (“Nehalem”) for servers, which will run two threads per core, and AMD is planning for a 12-core server in 2011.
If motherboard makers start going to 8, 16 or 32 socket motherboards, it could be possible to see 256-core machines. With 12 and 16-core processors, that could hit 512 cores, and so on in the coming years.
This article was first published on InternetNews.com. To read the full article, click here.
-
Ethics and Artificial Intelligence: Driving Greater Equality
FEATURE | By James Maguire,
December 16, 2020
-
AI vs. Machine Learning vs. Deep Learning
FEATURE | By Cynthia Harvey,
December 11, 2020
-
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
-
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
-
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
-
Top 10 AIOps Companies
FEATURE | By Samuel Greengard,
November 05, 2020
-
What is Text Analysis?
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
-
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
-
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
-
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
-
Top 10 Chatbot Platforms
FEATURE | By Cynthia Harvey,
October 07, 2020
-
Finding a Career Path in AI
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
-
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
-
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
-
Top 10 Machine Learning Companies 2021
FEATURE | By Cynthia Harvey,
September 22, 2020
-
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
-
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
-
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
-
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
-
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
SEE ALL
ARTICLES