Strong processor and storage growth continue to challenge physical planners and facilities managers, many of whom have seen recent and massive facility upgrades vanish in the face of extensive infrastructure growth. We offer guidelines on how to keep facilities needs manageable.
By Rich Evans
Driven by centralization, ongoing growth, and sustained expansion of both storage and processor infrastructure, businesses are re-examining their short-term data center growth plans.
Complicating assumptions of future space needs have been recent, dramatic reductions in space needs of storage and processing hardware (or “form factor technology”) that have freed large tracts of data center real estate. However, we believe that for the next five years planners should assume more “standard” technology form-factor rates of change for both storage and processors.
More important, while base processor and storage form factor technology will see densities double every 18 months, adding complicated power supply and expanding interconnection requirements will throttle actual floor space improvements. On average, only about 14 percent to 17 percent of floor space will be freed up each year.
Other Recent META Reports |
Java Keeps Brewing, But .Net Looms |
Dramatic growth in capacity, especially for storage, will make significant demands on data center real estate and power. As significant as pure floor space, power upgrades will be an ongoing event, requiring a doubling in power density every three to five years. For example, a relatively modest 30 percent compound annual growth rate in hardware capacity can increase real floor space requirements by 40 percent to 50 percent in three years (an annual rate of about 13 percent).
More typically, 50 percent annual capacity growth rates will force data centers to more than double during the same period (a 30 percent annual growth rate). With data center floor space costing $700-$1,000 per square foot for first-class accommodations, a rapidly growing 10,000-square-foot data center will face additional costs of $8 million to $12 million over a three-year period.
To avoid prolonged budget and possible infrastructure failures because of poor implementations, users must develop strong, realistic data center growth planning disciplines that meld technology refresh cycles, infrastructure costs, and physical plant expenses into a realistic game plan.
Technology Space Folk Law
An ongoing debate among physical planners is the battle around new technology versus old, and the effects on floor space. Although important, we believe the debate is a bit narrow. Moreover a “best” space solution (driven almost always by newer technology) must also include additional technology costs and physical plant upgrades, such as power and air conditioning.
The pros and cons of the argument can quickly be resolved with the help of a model that measures the effects of three- versus four-year technology refresh cycles. For example, for the modest-growth shop (30 percent annual capacity growth), space differences between a three- and a four-year refresh plan can vary between 5 percent and 11 percent in space because of infrastructure product cycles. With a 10,000-square-foot data center as a baseline and a three-year replacement cycle, this center will grow to 14,260 square feet in three years; a four-year fresh cycle results in the need for an additional 1,570 square feet, or $1.57 million in additional floor costs.
The driver of this difference is that even though a large (percentage wise) technology refresh occurs each year on average — 42 percent for the three-year model and 35 percent for four-year model — older, larger technology makes up a larger portion of the installed base for longer periods. So even though a four-year refresh model requires about 17 percent less technology and users might be able to delay one year an inevitable power and air upgrade, simple space costs will drive a significant a portion of technology refresh cycle decision making.
For companies planning on adding technology capacity by 50 percent a year, refreshment cycles have less effect on floor space. For example, a three- versus four-year refreshment cycle can result in a 4 percent to 10 percent floor space increase. Again, looking at our 10,000-square-foot example, the floor space needed after three years is 21,970 square feet. A 10 percent increase puts needed floor space at 24,167 square feet, and incremental costs for this additional 2,197 square feet could be as high as $2.2 million.
For the four-year technology refresh model, because the company is buying less technology for every period, equipment savings produce only 12 percent technology savings. For many users, the additional space costs point to shorter technology cycles as an overall better solution. (They do, however, require substantial planning, as well as often grueling capital appropriation cycles.)
Other, more-aggressive growth models (e.g., 70 percent or even 100 percent) produce similar results: newer and shorter technology life cycles help win the space war, with fewer and fewer differences in space requirements for three- and four-year refresh cycles. However, in all cases it is worth modeling the technology landscape for at least five years to determine short-term advantages driven by complicated power density requirements.
Nasty Power Density
Many traditional data centers have been undergoing significant infrastructure upgrades or replacements required to support rapid storage and rack-mounted server growth, which usually happens in conjunction with consolidation. However, many users are becoming painfully aware of the emerging environmental deficiencies (e.g., power, cooling, distribution, connectivity) of near-term facility planning, as well as their ominous threat to long-term growth needs. For example, late-1990s’ requirements of 100 watts per square foot of average power now exceed 200 watts per square foot, and will double again by 2004.
Driven primarily by rapidly increasing rack-mounted servers (being added at 45 percent to 55 percent annual rates) and storage, power-hungry hardware threatens many current data-center design specifications. Although a slower technology refresh cycle (at the expense of space) can push power upgrades out 12-18 months, these power and cooling problems will continue to plague designs.
In fact, the 2004 400-watts-per-square-foot requirement will again double by 2008, so designers must work this into longer-range facilities plans so that space can be fully used, as opposed to 40 percent to 50 percent utilization because of insufficient power and cooling.
Business Impact:Insufficient investment in data center infrastructure can minimize customer transaction, interactions, and sales volumes, which can negatively affect overall revenue.
Bottom Line:To avoid the risk of infrastructure shortfalls caused by insufficient facilities size and functionality, users must implement strong data center growth planning disciplines that include model technology refresh alternatives as well as power density requirements.
Rich Evans is a consultant with META Group, an IT consulting firm based in Stamford, Conn. Strong processor and storage growth continue to challenge physical planners and facilities managers; many that have seen recent and massive facility upgrades vanish in the face of extensive infrastructure growth. We offer guidelines on how to keep facilities needs manageable.
Ethics and Artificial Intelligence: Driving Greater Equality
FEATURE | By James Maguire,
December 16, 2020
AI vs. Machine Learning vs. Deep Learning
FEATURE | By Cynthia Harvey,
December 11, 2020
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2021
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.