In the first week of September last year, I explained, Why You Need a Fuller Data Center and challenged you to partake in some data center minimizing activities. One of those activities was workload (server) consolidation. If workload consolidation wasn’t on your 2009 to-do list, I’d put money on the probability of it being on there this year. Workload consolidation is one way to decrease the number of servers sucking power for systems delivering diminishing returns for their maintenance as opposed to productivity cost.
Workload consolidation involves analyzing system performance and combining the workloads of underutilized systems to create a more efficient data center. For example, if you have 10 web servers all humming along at 15 to 20 percent CPU and memory utilization on each system, from a practical standpoint, those systems are idle. Their low impact workloads present you with the opportunity to combine them into a pair of highly available systems whose average utilization will hover in the 65 to 75 percent range. Peak utilization might reach 95 percent at times, but the average utilization range is a comfortable target for which to aim.
This week, I present five steps to a more efficient data center through workload consolidation.
The first step in this process is to collect system performance data. This step is likely to take the longest amount of time to perform. You don’t want performance snapshots but rather a full picture of performance trends. You must gather enough data so that you can see hourly trends, day of week trends and even monthly trends. A year’s worth of data is a reasonable amount of time to gather the information you need. If you already have this data, then you’re ahead of the game and you may proceed to the next step: Data Analysis.
If you haven’t gathered system performance data, you must engage your staff to do so. There are numerous tools available for gathering this data, but the free, open source product called Orca is a good example of the kind of product and data collector you need for this activity. If time permits, collect data for at least two weeks before attempting any data analysis in the next step.
After you’ve collected enough data, it’s time to analyze that data. It is this analysis upon which you’ll create your workload consolidation plan in Step Three. Fortunately, tools like Orca have a strong visual, as well as a strong numeric component to them. The hourly, daily, weekly, monthly, quarterly and yearly graphs offer great insight into your system’s performance at a glance. You will not need your calculator to visualize positive or negative trends.
Read the rest at ServerWatch.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.