Datamation content and product recommendations are
editorially independent. We may make money when you click on links
to our partners.
Learn More
Millions of miles above us, a new networking technology is taking shape that could one day help improve how applications are networked on Earth.
NASA is testing a network layer technology that can withstand the rigorous demands of space communication better than the standard TCP/IP (define) protocol, which dominates terrestrial (non-space) networking technologies.
Officially called Disruption Tolerant Networking (DTN), the technology went through testing earlier this month with a space probe that is currently more than 20 million miles from Earth.
DTN uses a different kind of approach than TCP/IP for packet delivery that is less cumbersome and more resilient to disruption than TCP/IP.
“In fact, far more research has been done to date on the application of DTN to terrestrial communication problems than on its use in space flight missions,” said Scott Burleigh, a senior engineer for the Deep Impact Networking Experiment of NASA’s JPL (Jet Propulsion Lab). “DTN has potential benefits in providing connectivity to parts of the world that are under-served by existing network infrastructure, in supporting oceanographic research, in tactical military communications, and more,” he told InternetNews.com. “It’s a pretty active field.”
The basic idea behind DTN network endpoints aren’t always continuously connected. In order to facilitate data transfer, DTN uses a store-and-forward approach across routers that is more disruption-tolerant than TCP/IP. However, the DTN approach doesn’t necessarily mean that all DTN routers on a network would require large storage capacity in order to maintain end-to-end data integrity.
“It’s always possible to have a DTN router that happens to be in constant communication with all of its neighbors over links on which round-trip times are very short, in which case very little storage would be needed,” Burleigh explained. “All the bundles it received would immediately be forwarded, much as in an Internet router.”
If a DTN router is required to hold onto data for some length of time, then it would need some place to park that data. The amount of storage needed would depend on the difference between the incoming and outgoing data rates and the maximum length of time that the former may exceed the latter.
In terms of network addressing for DTN, NASA is using an overlay technology that could include IPv4 or IPv6 address spaces. Burleigh explained that DTN is based on a new protocol named Bundle Protocol (BP; RFC 5050). Bundle protocol operates as an overlay protocol that links together multiple subnets (such as Ethernet-based LANs) into a single network.
“BP is an overlay protocol that can link together multiple networks, some of which might be IPv4-based or IPv6-based, but some of which might be much less familiar networks such as sets of deep space links,” Burleigh said.
The regular Internet uses DNS (domain name servers) (define) to connect domain names to IP addresses. For now there is no similar DNS system for space-based traffic. Burleigh noted that DNS is not an issue for NASA right now since the number of different devices isn’t yet so large that referring to them by number rather than by name is a problem. For potential non-space DTN applications Burleigh claimed the current Internet DNS could be used.
“Eventually there may additionally be a requirement for some sort of native DTN endpoint ID directory service, but we don’t yet know exactly what that service would have to do or how it would have to function,” Burleigh said.
NASA already has its own Deep Space Network for communicating with its fleet of spacecraft spread across our solar system. With DTN, the core technologies that NASA is currently using at the lower levels of the communications stack will remain the same.
This article was first published on InternetNews.com.
-
Ethics and Artificial Intelligence: Driving Greater Equality
FEATURE | By James Maguire,
December 16, 2020
-
AI vs. Machine Learning vs. Deep Learning
FEATURE | By Cynthia Harvey,
December 11, 2020
-
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
-
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
-
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
-
Top 10 AIOps Companies
FEATURE | By Samuel Greengard,
November 05, 2020
-
What is Text Analysis?
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
-
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
-
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
-
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
-
Top 10 Chatbot Platforms
FEATURE | By Cynthia Harvey,
October 07, 2020
-
Finding a Career Path in AI
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
-
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
-
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
-
Top 10 Machine Learning Companies 2021
FEATURE | By Cynthia Harvey,
September 22, 2020
-
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
-
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
-
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
-
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
-
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
SEE ALL
ARTICLES