It’s time for a Big Data reality check. All of the hype about the profound value and benefits of the ability of new databases, servers, networks and other ingredients to rapidly process and present massive amounts of data in the Big Data stew has risen to the peak of expectations made famous by the Gartner hype cycle. After conducting a variety of surveys about the reality of Big Data implementations this year, and asking leading consultants and vendors about what they and their clients have learned, it’s time to just slightly deflate the balloon.
While it is too early to declare the arrival of the next phase of the hype cycle—the inevitable trough of disillusionment—early adopters have learned lessons that should be shared with the rest of us. Here are nine Big Data lessons learned that I’ve collected:
1. Focus on data management. The IT department, specifically data architects, need to determine where the data and apps will reside. In one on-premise system or together in a cloud implementation? The traditional Business Intelligence era approach of 10 years ago—trying to have everything in one data warehouse—frequently failed in the wake of numerous data marts developed by maverick departments like finance. Thomas Davenport, co-author of the best-selling book Competing on Analytics and the upcoming Big Data at Work, warns that “while it is good to have options, multiple Big Data implementations leads to a more complex set of IT management decisions.”
Michael Driscoll, CEO of Metamarkets and a longtime observer of the analytics scene, says he’s seen too many large companies attempt to put all of the data—and the processors—in one place. He warns against pursuing a “one- platform” solution, foisted on the organization by the CIO. “Unified data platforms are a false promise of hope,” he contends. They are too big, too complex and will inevitably frustrate one or more departments or units. “A federation of services approach is best,” he explains. In these arrangements, marketing and finance and other departments can each have their own Big Data implementation.
Most of the value of Big Data comes from co-locating it with knowledgeable end users, at the edges of the organization, where they can tinker with and glean insights from their own data.
2. Don’t underestimate the data integration challenges. Deriving value from Big Data usually is dependent on processing unstructured information—video feeds from shop floors, telematics sensors in vehicles, GPS sensors in mobile devices, speech to text files and a host of other bits and pieces of information that are not readily processed. “Most organizations do not have experience cleaning these types of data,” notes Davenport.
IBM and others promise that their semantic analytics tools are able to not only parse these unstructured data types, but do it fast enough to support real time decision making. Anjul Bhambhri, IBM’s vice president of Big Data within its software group, advises keeping all of the incoming data in its raw state, to preserve information that may be useful later when processed by semantic analytics.
“One of the implicit benefits of a Big Data platform is that you can preserve the raw fidelity of the data and apply multiple types of semantic analytics tools that will filter out the appropriate noise for the specific types of analysis being performed,” Bhambhri explains. “This allows the same set of raw data to be applied to multiple applications and domains, without having to model the raw data upfront.”
3. Start with the basics. “Many of us love to wax poetic about a utopian future where you stroll into a BestBuy, and your smartphone buzzes with a coupon for the new Microsoft Surface,” comments Driscoll. “The deal is offered because it is back-to-school week and BestBuy has access to and processed information about your household, including past Microsoft purchases.” Another example of utopia: “We analytics folks love to tout our ability to predict the perfect song for your current mood or movie for your weekend. “However, we need to first focus on the basics,” he adds. “Big Data should first answer questions like ‘How much money did my company make yesterday.’ Or, ‘Why did our revenues spike 10 percent last Thursday?'”
4. Big Data success requires scale and speed. Hadoop can process a lot of data, but it is a batch process. In many industries, real-time decision making is no longer optional. Driscoll avers that putting SQL on top of Hadoop or other Big Data stores enables organizations to actually use Big Data information in a timely way. As he puts it, “I am advocate for ‘Know SQL’ over ‘NoSQL’.”
5. Data visualization is important for Big Data users. Front line professionals and others who are expected to be able to take action based on Big Data insights need an easily digestible delivery mechanism.
6. Big Data implementations belong in the cloud, insists Driscoll, because that’s where Big Data lives. While others will disagree, for various regulatory or corporate culture reasons, he says the data and the applications should be accessible via a software as a service (SaaS) approach. One of the primary reasons for putting the Big Data program in the cloud is lesson learned number 7.
7. Big Data access via mobile devices. The latest generation of touch-enabled smartphones and tablets are driving a huge change in the way companies operate and communicate internally and with their partners and customers. Ignoring their demand for access to manipulate Big Data information and insights via their mobile device is a career-shortening decision for IT managers.
8. Don’t stop at stage one, deploying Big Data to find cost reductions. Once the technology is proven, the next stage is to identify opportunities to improve an organization’s top line growth. “Most companies tend to start on their Big Data voyage with a goal of achieving cost savings and then expand from there to add additional forms of data and perform analytics that contributes to top line revenue,” IBM’s Bhambhri notes. “Once they prove out these cost savings, they start to leverage the platform to bring in other sources of data to combine with the data they have off-loaded or the models they have now moved to the big data platform.” She adds that such data types include but are not limited to telemetry data, geospatial data, additional master data from other enterprise systems, click stream data and social media data. Adding these data types enables “other LOBs in the enterprise to leverage the power and scale of the platform as well as the content in it.”
This is the pattern that Bhambhri has seen in over 500 implementations across industries, including telecommunications, automotive and finance sectors.
9. If you’re not in the Big Data pool now, the lifespan of your career is shrinking by the day. “If you want to stay current and in demand, it’s a good idea to buy access to a Hadoop cluster and get some experience with it, as well as scripting languages,” urges Davenport. “Smart IT people start to master/explore new technologies ahead of the demand and the price/performance is so much better than data appliances and data warehouses.”
Indeed, Big Data projects are underway in at least a third of the large organizations responding to various surveys I’ve worked on, so it’s clear that the hype cycle has yet to peak. If you’re in IT and not already climbing the Big Data mountain, in a few years you may find yourself technologically obsolete.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.