There has been considerably emphasis on the subject of power efficiency and microprocessors, mostly because Intel and AMD have been beating the drum of lower power consumption louder than Keith Moon in his prime.
However, there is an overlooked element inside that refrigerator-sized humming black plastic and metal box that is sucking up considerable amounts of power and generating heat: the memory.
Memory sticks are plastic and silicon and don’t, for the most part, require a heat sink like the CPU. However, they draw a measurable amount of power, and in this new era of 64-bit computing, they are becoming the hidden electric bill.
The great limiting factor of 32-bit computing was its 4GB memory limit. Now that we are firmly in the era of 64-bit computing, that limitation has been smashed, consigned to the ash heap along with single core CPUs and the AGP bus. A 64-bit machine can easily handle 64GB, 128GB or more of memory, up to 16 petabytes.
With the mania around virtualization and people running five, 10 or 20 virtual servers on one box, that means a lot of memory is needed in these beasts. Instead of the days where a server had a pair of 2GB memory sticks, they now have as many as 32 memory sticks in them. Many four-socket motherboards have eight memory banks per socket.
A memory stick, or DIMM (define), can consume up to 12 watts. Multiplied by 32, and suddenly you’ve got what could be the single biggest power draw in the server next to storage, depending on the kind of memory you use. What has always been an afterthought in system purchases is going to become a major concern for the power constrained.
DDR, or dual data rate memory, is used in desktops, laptops and video cards. Currently, computers are using DDR2, the second generation of the technology, while DDR3, designed for faster speed and lower power, is under development. AMD uses DDR2 memory in its Opteron-based servers.
However, Intel (Quote) uses fully buffered DIMM, or FBDIMM, in its Xeon-based servers. FBDIMM has a chip smack in the middle of the stick called an Advanced Memory Buffer (AMB), which is not used in regular DDR2 sticks.
The AMB is a serial interface that increases the bandwidth of memory and makes it easier to put eight sticks in a bank without degradation of performance. In a bank of eight DIMM slots, memory would degrade in performance once you go beyond four sticks. It’s also very good for accessing large amounts of sequential memory and offers error correction that DDR doesn’t have.
The drawback, though, is its power draw. To keep the AMB going means memory in a system never really has a chance to power down when under low workloads. A benchmarking lab called Neal Nelson Benchmark Laboratories ran a series of tests on power consumption.
It found that while idle, a dual processor, dual core Xeon server consumed 119.3 watts of power while a dual core, two-processor Opteron server drew only 66.7 watts, a 44 percent power savings for the Opteron-based machine. Both machines had 8GB of memory.
This article was first published on InternetNews.com. To read the full article, click here.
Ethics and Artificial Intelligence: Driving Greater Equality
FEATURE | By James Maguire,
December 16, 2020
AI vs. Machine Learning vs. Deep Learning
FEATURE | By Cynthia Harvey,
December 11, 2020
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2021
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.