Before Wi-Fi can displace Ethernet as the LAN access method of choice, enterprises must learn how to accurately plan, budget, provision, troubleshoot, and tune WLANs. To facilitate this, Meru Networks believes that WLANs must become more predictable by exploiting the advantages of virtualization.
“Micro-cell [WLAN] adaptation and variability is the main cause of high operating expenses,” Joe Epstein, Meru’s senior director of technology, told Wi-Fi Planet. “Predictability has long been taken for granted in the wireline world, but has not been fully possible in the wireless world. With virtual cells, pooling resources took us 75 percent of the way there. With virtual ports, we’ve taken the next step by partitioning that pool into deterministic per-user sandboxes.”
Slice and dice
vWLAN (Virtual WLAN)—a new core feature of Meru’s System Director platform—carves available RF resources into “virtual ports” that can be configured, managed, and monitored at the same level of granularity as Ethernet switch ports.
“As Ethernet speeds increased from 10 to 100 to 1000 Mbps, [shared] hubs couldn’t keep up. They had to be replaced with Ethernet switches that could intelligently share uplink ports and backplane capacity,” said Epstein. Moving to dedicated switch ports helped LAN administrators plan capacity/cost more accurately, insulate stations from each other, isolate problems, and deterministically manage per-user performance.
Similarly, vWLAN applies virtualization techniques to Meru Access Points (APs) to aggregate and then divvy the shared RF medium across wireless clients. “Like disk or server virtualization, our approach abstracts out the physics that underlie wireless networks to improve their reliability and reduce cost,” said Epstein.
First, Meru’s virtual cell architecture places every AP on the same channel(s), using controller-based Air Traffic coordination to avoid the roaming delays and co-channel interference found in micro-cell WLANs. Virtual cells create one large “wireless blanket” shared by all clients that associate to a given network, identified by ESSID.
Meru’s new virtual port concept further refines this architecture by snipping the big RF blanket into tiny little pieces: individually-configurable RF resource partitions. Each virtual port is assigned to a single station at associate time, identified by its own unique BSSID.
Personalized sandboxes
Virtual BSSIDs (AP MAC addresses) are commonly used to offer multiple ESSIDs from a single device, so that each can be associated with different security and quality of service policies—for example, when one radio supports both corporate and guest WLANs.
Meru’s virtual ports start with the same technique—virtual BSSIDs—but apply them in a far more granular fashion. In a Meru WLAN, all users attempt to associate to the same ESSID, but end up communicating with their own private logical AP (virtual BSSID). This makes it possible to use standard 802.11 management frames to deliver customized traffic parameters—including WMM Quality of Service Parameter Sets—to each and every station.
In micro-cell WLANs that do not use virtual ports, all stations associated to a given ESSID must use the same QoS parameters and the same multicast keys. In effect, RF and AP resources are shared by the entire network, using WMM to prioritize and WPA2 to secure traffic. One mis-configured or extremely chatty station can easily impact everyone else’s performance.
But, assigning each station its very own logical AP means that different QoS parameters can be provisioned for per user. Meru’s controller and physical APs can then use standard WMM to enforce defined resource bounds, regulating traffic flow. This per-station “sandbox” simplifies administrative tasks like capacity planning, trouble-shooting, and tuning to meet service level agreements. For example, a chatty station can be given lower priority or limited by flow control.
Furthermore, per-BSSID (and thus per-station) multicast encryption keys stop users from snooping on each other’s over-the-air multicast packets. Once wireless traffic hits the wire, conventional VLANs can still be used to create desired multicast/broadcast domains.
Transparent roll-out
Because Meru’s approach leverages standard protocols, no proprietary client-side software or configuration is required. However, to be fully QoS-manageable, those devices must support WMM. “Every new 802.11n client is required to support WMM anyway,” said Epstein. “Other clients can still be assigned to a virtual port but they are just more difficult to control.”
vWLAN technology has been incorporated into Meru’s System Director 3.6 software, now shipping to all new customers and available at no additional charge to existing customers with support contracts. “We consider this part of our core OS; virtual ports are on by default,” said Epstein. “We think this is a big step forward for us and the industry—we’re very excited about it.”
Lisa Phifer owns Core Competence, a consulting firm focused on business use of emerging network and security technologies. A 27-year industry veteran, Lisa has been involved in Wi-Fi training, product evaluation, network deployment, and security assessment since 2001.
This article was first published on WiFiPlanet.com.
Huawei’s AI Update: Things Are Moving Faster Than We Think
FEATURE | By Rob Enderle,
December 04, 2020
Keeping Machine Learning Algorithms Honest in the ‘Ethics-First’ Era
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 18, 2020
Key Trends in Chatbots and RPA
FEATURE | By Guest Author,
November 10, 2020
FEATURE | By Samuel Greengard,
November 05, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
November 02, 2020
How Intel’s Work With Autonomous Cars Could Redefine General Purpose AI
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 29, 2020
Dell Technologies World: Weaving Together Human And Machine Interaction For AI And Robotics
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
October 23, 2020
The Super Moderator, or How IBM Project Debater Could Save Social Media
FEATURE | By Rob Enderle,
October 16, 2020
FEATURE | By Cynthia Harvey,
October 07, 2020
ARTIFICIAL INTELLIGENCE | By Guest Author,
October 05, 2020
CIOs Discuss the Promise of AI and Data Science
FEATURE | By Guest Author,
September 25, 2020
Microsoft Is Building An AI Product That Could Predict The Future
FEATURE | By Rob Enderle,
September 25, 2020
Top 10 Machine Learning Companies 2020
FEATURE | By Cynthia Harvey,
September 22, 2020
NVIDIA and ARM: Massively Changing The AI Landscape
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
September 18, 2020
Continuous Intelligence: Expert Discussion [Video and Podcast]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 14, 2020
Artificial Intelligence: Governance and Ethics [Video]
ARTIFICIAL INTELLIGENCE | By James Maguire,
September 13, 2020
IBM Watson At The US Open: Showcasing The Power Of A Mature Enterprise-Class AI
FEATURE | By Rob Enderle,
September 11, 2020
Artificial Intelligence: Perception vs. Reality
FEATURE | By James Maguire,
September 09, 2020
Anticipating The Coming Wave Of AI Enhanced PCs
FEATURE | By Rob Enderle,
September 05, 2020
The Critical Nature Of IBM’s NLP (Natural Language Processing) Effort
ARTIFICIAL INTELLIGENCE | By Rob Enderle,
August 14, 2020
Datamation is the leading industry resource for B2B data professionals and technology buyers. Datamation's focus is on providing insight into the latest trends and innovation in AI, data security, big data, and more, along with in-depth product recommendations and comparisons. More than 1.7M users gain insight and guidance from Datamation every year.
Advertise with TechnologyAdvice on Datamation and our other data and technology-focused platforms.
Advertise with Us
Property of TechnologyAdvice.
© 2025 TechnologyAdvice. All Rights Reserved
Advertiser Disclosure: Some of the products that appear on this
site are from companies from which TechnologyAdvice receives
compensation. This compensation may impact how and where products
appear on this site including, for example, the order in which
they appear. TechnologyAdvice does not include all companies
or all types of products available in the marketplace.