Saturday, September 7, 2024

Coping with a Mobile Workforce

Datamation content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

As more workers discover the joys of becoming connected and, simultaneously, untethered, IT execs are expanding WiFi projects to better serve this growing constituency.

To accommodate a growing mobile workforce, more companies are installing wireless LANs (WLANs). While organizations initially deployed wireless on a trial basis or to meet the needs of just a few users, now they are making it a standard part of their IT infrastructure.

The Harvard Medical School (HMS) and the Beth Israel Deaconess Medical Center in Boston, Mass., for example, have been using wireless for several years. They are now in the middle of a six month deployment which will expand its use to cover four different types of applications: transmission of secure medical data; web access for patients and guests; Voice over IP; and Radio Frequency Identification (RFID) to track the location of equipment.

”Wireless is now a mature technology and it has become an enterprise service for us,” said Dr. John D. Halamka, CIO for the HMS and Beth Israel.

Plan for Growth

According to people like Halamka who have many years of experience under their collective belts, there are three important lessons to learn in coping with a mobile workforce.

The first is to plan for growth. Although you may initially deploy wireless technology on a trial basis or for a specific function such as accommodating field sales reps, growth must be taken into account at the earliest stages.

”Make sure whatever you put in is scalable,” advises Mike Noe, IT Director for Stanford Law School. ”It’s like eating peanuts: once you start, you always want more.”

Stanford already provides full, campus-wide, 802.11b wireless service for its students, faculty and staff. Noe’s next project is to make it easier to rapidly accommodate large numbers of visitors.

”We host dozens of events annually and need a seamless way to add them to the network en masse, and keep them from getting anything other than Internet connectivity,” he said.

Expansion isn’t limited to adding more users. The mobile hordes also are clamoring for greater functionality.

Halamka’s current wireless project, for example, includes replacing over 200 of the hospital’s 802.11b wireless access points with higher-speed 802.11g devices. He said they need the addition bandwidth for video conferencing so they can bring the translation services right to the patient, without having to bring the translator there.

Finding the Site

The next wireless lesson is that the access points need to be carefully placed and tuned in order to obtain optimum accessibility and throughput. This is not just a paper-based exercise. You have to physically survey an area and see how the waves reflect and propagate around a space, as well as what materials are blocking signals.

Piping in walls, file cabinets, trees and human bodies can all absorb 802.11 signals, cutting down on signal strength and transmission speeds. This even applies to small areas. For example, ABC Fine Wine and Spirits installed wireless networks in all 150 of its retail establishments three years ago, but Help Desk Manager Guy Ledbetter reports that some of the locations have ”cold spots” in them where no signal is available.

To address these types of issues, Harvard’s Halamka recommends hiring an experienced firm to conduct a site survey while others prefer to keep this function in-house.

Jon James, IT Manager for the Cherokee Nation in Tahlequah, Oklahoma, has a gigabit Ethernet backbone at the main campus, but finds it cheaper to use wireless networks for remote facilities.

He and his staff conduct their own surveys using a wireless PDA with analysis software from AirMagnet. They use it to detect interference on a channel and to select the best places to locate both the access points and the computers for optimum throughput.

”A good wireless sniffer will not only aid in antenna placement and wireless surveys but will also help in diagnostics and security,” he said.

Once the access points are in place, however, they may still need tweaking to accommodate changing usage patterns. Stanford’s Noe uses AirWave Wireless’ AirWave Management Platform (AMP) to monitor his wireless network and adjust loads.

”We can see traffic load by node or system wide,” he said. ”This helps us load-balance the system. We can set thresholds and, if we start to get too much traffic on one, we can move them to adjust the load.”

This article was first published on CIOupdate.com. To read the full article, click here.

Subscribe to Data Insider

Learn the latest news and best practices about data science, big data analytics, artificial intelligence, data security, and more.

Similar articles

Get the Free Newsletter!

Subscribe to Data Insider for top news, trends & analysis

Latest Articles