Tuesday, June 25, 2024

Big Data Discovery Mode vs. Production Mode

Datamation content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.

When users talk about the features they require of their BI tools when working with big data, they typically end up describing their requirements in terms of two overarching themes relating to high-level analytical techniques, or modes of analysis. These can be summarized as follows:

Discovery Mode: Explore and Experiment – Ask new business questions on unknown data.

Production Mode. Monitor and Adjust – Provide trusted answers from data that is understood.

This article discusses these two modes of analysis, the differences between them and how they ultimately work together for better decision making and new business innovation. These guidelines can also be used when evaluating new and existing BI tools for your big data environment.

Before we look in detail at how these modes of analysis differ, we should note that they are highly complementary and always work together. Typically, new insights resulting from efforts in discovery mode become operationalized in production mode. For example, in discovery mode an online retailer develops a new way to segment and score potential customers based on their social media preferences. In production mode, purchasing behavior within the new customer segments is monitored to understand effectiveness so the segmentation strategy can be adjusted accordingly.

Conversely, what we learn in production mode generates new questions requiring new data that first needs prototyping in discovery mode before operationalizing. In our example above, we decide our segments need enhancing with some TV viewing data that recently became available. In this case we need to re-enter discovery mode to decide how to best incorporate this data into our segmentation model.

Given the definition of these modes of analysis are and how they work together it is worth taking a look at the differences between them as this drives the need for different sets of product capabilities required of our BI tools.

To help us explain the differences we will look at the modes of analysis across 4 distinct angles. These are:

* The organizational factors driving the need for analytics

* The types of applications and features being developed

* The requirements for the data

* The desired technology environment

Below is how modes of analysis differ across these categories:

big data modes

A BI tool should provide product capabilities to enable both of these modes of analysis. It is important that modern BI tools appreciate the full breadth of the analytics lifecycle and this often begins in discovery mode then heads into production mode later on (and iteratively back into
discovery mode as time passes – as discussed above), especially when organizations are aim to deliver brand new innovation through analytics on big data. These types of projects often start with little or no understanding of requirements upfront and no prior knowledge of the data sources and structures to be incorporated.

Organizations should not have to switch BI tools to move between discovery and production modes. There should be no artificial tradeoffs imposed between data and user volume for example, modern BI tools should have the fundamental capabilities in place to handle both type of analytic scenarios.

Will your existing BI tool stand up to these tests?

About the author: Richard Tomlinson is the Senior Director of Product Management at Arcadia Data

Subscribe to Data Insider

Learn the latest news and best practices about data science, big data analytics, artificial intelligence, data security, and more.

Similar articles

Get the Free Newsletter!

Subscribe to Data Insider for top news, trends & analysis

Latest Articles