Business Intelligence Software and Predictive Analytics

Business intelligence software already enables forecasting, but predictive analytics attempts to put hard numbers beneath what are sometimes little more than educated guesses.
(Page 1 of 2)

Traditional business intelligence software does a very good job of showing you where you’ve been. How many items did you sell yesterday? To whom? What were the margins?

This information helps with forecasting. Based on past demand, you know how many products you can expect to sell in the same time frame in the future. However, forecasting only goes so far. Factoring in other variables – market forces, political upheaval, changing customer preferences, etc. – is trickier, yet this is what the brave new world of predictive analytics promises to do.

The big business intelligence software vendors have begun rolling predictive analytics features into their main software suites. The same organizations leading the BI market – SAP, SAS Institute, IBM and Oracle – are also the ones paving the way for predictive analytics.

Yesterday, for instance, IBM opened a predictive analytics lab in China. This is just the latest in an estimated $12-billion commitment to build out IBM’s analytics portfolio.

What Exactly is Predictive Analytics?

Everyone makes predictions, but what makes predictive analytics worthy of big-dollar investments?

To put it simply, key elements of predictive analytics have already been proven. Take traditional business intelligence, combine it with data mining and add on statistical analysis and you have predictive analytics. Math geeks will squabble over the nuances, say, whether a specific model is a predictive, descriptive or decision-making one, but for most organizations this boils down to using historical data along with probabilities to better assess the future.

Organizations already do plenty of forecasting, obviously, but predictive analytics attempts to put hard numbers beneath what are typically little more than educated guesses.

Tonya Balan, manager of the analytics product management team at SAS Institute, offers an example of how predictive modeling is different from simple forecasting. Forecasting will tell you that you’ll sell more ice cream cones in July than other months of the year.

Predictive modeling, on the other hand, will tell you the characteristics of ideal ice cream customers, the flavors they prefer and what sorts of marketing efforts will resonate with them.

Predictive Analytics – Roots in Behavior

Arguably, humans make their way through the world on the basis of predictive analytics. Skipping the interstate for surface roads because of heavy traffic is a simple version of predictive analytics. Watching a baseball game is an ongoing lesson in predictive analytics. In a hitter’s count, you expect the pitcher to throw a fastball. A lot of information actually goes into that prediction, and the statistics back it up.

Baseball is known as a stat geek sport for a reason. The trouble is that the game of baseball has many restrictions on it. It isn’t an open-ended system. Trying to figure out what exactly a hitter’s count is when it comes to, say, selling IT software during a recession is a much more difficult proposition.

That doesn’t stop organizations from trying. Think of lending, for instance. Your credit score, which looks at your past behavior to predict whether or not you are a good credit risk, is an industry standard. The inputs are small, however, and the outcomes are limited.

Most organizations need more sophisticated models for such complicated things as customer retention, supply chain management and the development of new product lines. And the more complicated a prediction becomes, the more risk there is for garbage-in-garbage-out statistics.

Using Social Media to Glean Predictive Analytics

According to Gartner, one of the ways to get better inputs is to leverage social media. Social media can deliver all sorts of real-time data from employees, partners and customers.

“Social software allows users to tag assumptions made in the decision-making process to the BI framework,” said Kurt Schlegel, research VP at Gartner.

“For example, in deciding how much to invest in marketing a new product, users can tag the assumptions they made about the future sales of that product to a key performance indicator (KPI) that measures product sales. The BI platform could then send alerts to the user when the KPI surpassed a threshold so that the decision makers know when an assumption made in the decision-making process no longer holds true. This approach dramatically improves the business value of BI because it ties all the good stuff BI delivers (e.g. analytical insights, KPIs) directly to decisions made in the business.”

With business-class collaborative software, this makes perfect sense. While information still needs to move from one application to another, it’s a rather straightforward migration. However, what happens when you want to get broader insight from blogs, user boards, Facebook, etc.?

So-called text mining may well be the next frontier of business intelligence software, and the U.S. government is sinking a ton of money into it. But it’s a technology lurching forward with mixed results.

Next Page: BI software and obstacles to predictive analytics

Page 1 of 2

1 2
Next Page

Tags: business intelligence, BI software, business intelligence software, predictive analytics, BI

0 Comments (click to add your comment)
Comment and Contribute


(Maximum characters: 1200). You have characters left.