Choosing a Big Data Solution: Seven Steps

Before you choose a big data solution, first understand your business goals – and your business itself.
(Page 1 of 2)

Also see: How to Choose a Big Data Solution (video roundtable)

Clearly, choosing a big data solution isn’t easy. As companies of all sizes try to extract more from their existing data stores, Big Data vendors are rushing in to provide a range of Big Data solutions, which comprise everything from database technology to visualization tools. With such a diverse selection of tools to choose from, buyers must carefully define their goals in order to find the right tools to meet their goals.

Before finding the right tools, however, organization must first ask themselves what business problems they’re trying to solve -- and why.

“Too many big data projects don’t start with problems to solve, but rather start with exploratory analytics,” said Chris Selland, VP of marketing and business development for HP Vertica. “That’s okay to a point, but eventually these questions need to be asked and answered. Companies have a lot of Big Data and many questions, but that doesn’t result in the CIO or CFO simply handing you a large amount of money to work with.”

Choosing a Big Data Solution: Step by Step

To be sure, choosing a Big Data solution is a complex process requiring balancing what may be conflicting input – the C suite may view the process differently from, for instance, the sales reps. The matter of costs (licensing? Start-up?) is particularly confusing, giving that many vendors’ solutions don’t compare on an apples to apples basis. Still, these seven steps should help you select the best big data solution for your business.

Step One: Define the Problem -- in the Right Way

The first step in choosing a Big Data solution, then, is to figure out what business problem you want to solve, but as you do, it’s important to frame that problem in a way that will get the project financed.

Christer Johnson, Principal, Analytics at EY, agrees with this first step but adds that it’s important to narrow your focus. “Some companies make the mistake of trying to do too much. Rather than seeking to extract value from all of your data, it’s important to start with the end in mind, allowing your business needs to drive the process,” he said.

He also recommends that you don’t overlook data siloes that seem resistant to analysis. “Very soon, I think companies will find the biggest value in unstructured data,” Johnson said. When most people think of unstructured data, though, many go no further than, say, digging into social media sentiment. “There are other types of unstructured data that will deliver more value overt time. For instance, look at call center data. Voice analysis software is getting good enough that you can analyze those calls for all sorts of things.”

Most businesses, though, only analyze five percent or less of those calls. When you start posing Big Data questions, keep an open mind. The biggest payoffs may come from unlikely sources. Will the Big Data tool you choose be able to adapt as your needs evolve?

Step Two: Ask What Will Be Gained by Solving this Particular Problem

By now, you're probably aware of the three Vs of Big Data: volume, velocity, and value. Often, however, businesses have a fuzzy idea about that third V. Just because you can theoretically extract value from some data store or another doesn't mean it'll be worth your trouble -- at least for now.

There is so much low hanging fruit that businesses must be smart about prioritizing potential projects, zeroing in on the ones with the biggest, most immediate payoff. Timing is a key component of any successful endeavor, after all.

Data never creates value all by itself. Rather, it simply drives action. Will your organization be ready to act on data-driven insights? Will you need to acquire other tools to do so?

It's important for project leaders to clearly define what business problems they hope to solve, when they expect to solve them, and why the timing to solve any particular problem is now.

They should also clarify why they think Big Data tools are the right ones to solve it.

Step Three: Rank Expected Benefits

A spokesperson for Jaspersoft, an embedded BI reporting and analytics provider, emailed me to recommend ranking expected benefits. The process of ranking expected benefits (improved decision making, reduced costs, increased efficiency, etc.) should help you narrow your search.

If your top priorities are sales and marketing ones, for instance, you'll be looking at an entirely different set of tools than those that will help you streamline hiring. That may seem obvious, but with so many general-purpose tools available, the act of ranking will help you determine whether a broad platform is the way to go, or whether you're better off finding something more specialized.

Ranking expected benefits can also help your organization refine its focus as it explores various data stores.

Step Four: Do a Self Assessment

Before shopping around for a shiny new Big Data solution, it's important to accurately assess where you are now. "Companies are starting to realize they need to start learning more about Hadoop and MapReduce," Johnson of EY said. "But before you go too far down that path, you need to look at the overall architecture of the software you already have. For instance, there are a whole slew of visualization solutions, but your existing architecture may work better with some than others."

How are you currently addressing the problem? Do you have any existing reports, dashboards, or spreadsheets that you can review with Big Data vendors to help them better understand your needs?

Ask yourself, where am I now? What tools do I already have? And be sure not to overlook foundational technologies, like a robust data warehouse, that you may have previously skimped on.

Step Five: Figure out How You Will Measure Progress

If you want to drive from LA to New York, it's not enough to simply locate New York on a map and point your car in the right direction. You need to follow signs along the way, and if you get off course, you need to map your way back to your route.

Measuring progress will be important to your users, as well. Let's say you just arrived in the U.S. from a small European country and have no sense of scale. After a day's drive, you could very well get discouraged since you're not yet in New York. Being able to measure progress is important for any project, just to keep your employees sane. It's easy to be excited early in a project, but harder to stay motivated later on once the going gets tough -- especially if you have no idea how far along you are.


Page 1 of 2

 
1 2
Next Page



Tags: business intelligence software, big data, Data Analytics, big data solution


0 Comments (click to add your comment)
Comment and Contribute

 


(Maximum characters: 1200). You have characters left.