Testing Switches for Vulnerabilities: Page 2

Book Excerpt: To hackers, your routers are a veritable Fort Knox. This article details some of the methods used to determine if the switches on your LAN are just as impenetrable.
(Page 2 of 3)

Spanning Tree Attacks

The Spanning Tree Protocol (STP) prevents loops in redundant switched environments. If the network has a loop, the network can become saturated, broadcast storms can occur, MAC table inconsistencies can arise, and, ultimately, the network can crash.

All switches running STP share information through the use of bridge protocol data units (BPDUs), which are sent every two seconds. When a switch sends a BPDU, it includes an identifier called a bridge ID. This bridge ID is a combination of a configurable priority number (default is 32768) and the base MAC address of the switch. Switches send and listen to these BPDUs to determine which switch has the lowest bridge ID. The switch that has the lowest bridge ID becomes the root bridge.

A root bridge is like a neighborhood grocery store in a small town. Every small town needs a grocery store, and every citizen needs to determine the best way to get to the grocer. Paths that take longer than the best route are not used unless the main road is blocked.

Root bridges operate in a similar way. Every other switch determines the best path back to the root bridge. This determination is based on cost, which, if not manually configured, is based on values assigned to bandwidth. Any other paths are put into blocking mode and only come out of blocking mode if they detect that doing so would not create a loop, such as if the primary path went down.

A malicious hacker might take advantage of the way STP works to cause a denial-of-service (DoS) attack. By connecting a computer to more than one switch and sending crafted BPDUs with a low bridge ID, a malicious hacker can trick a switch into thinking that it is a root bridge. This can cause STP to reconverge and can subsequently cause a loop, which in turn might crash the network.

MAC Table Flooding

Switches operate by recording the source MAC address as a frame enters a switch. The MAC address is associated with the port it entered so that subsequent traffic for that MAC address only goes out that port. This saves on bandwidth utilization because traffic does not need to go out all ports, but only those ports that need to receive the traffic.

MAC addresses are stored in content addressable memory (CAM), which is 128 K of reserved memory to store MAC addresses for quick lookup. If a malicious hacker can flood CAM, he can cause the switch to begin flooding traffic everywhere, opening the door to man-in-the-middle (MITM) attacks or, even worse, crashing the switch in a DoS attack.

dsniff is a collection of Linux-based tools for penetration testing. One of the tools included in the dsniff package is macof. The macof tool attempts to flood the CAM of a switch with random MAC addresses so that frames are flooded out all ports. This facilitates sniffing in a switched environment.

ARP Attacks

The Address Resolution Protocol (ARP) maps Layer 3 logical IP addresses with Layer 2 physical MAC addresses. ARP requests are sent out when a device knows the IP address but does not know the MAC address of a requested host. ARP requests are sent out as broadcasts so that all hosts receive the request.

A malicious hacker can send a spoofed ARP reply to capture traffic directed toward another host. Figure 10-7 illustrates an example in which an ARP request is sent as a broadcast frame asking for the MAC address of a legitimate user. Evil Jimmy is also on the network, trying to capture traffic being sent to this legitimate user. Evil Jimmy spoofs an ARP response declaring himself as the owner of IP address with the MAC address of 05-1C-32-00-A1-99. The legitimate user also responds with the same MAC address. Now the switch has two ports associated with this MAC address in its MAC address table, and all frames that are destined for this MAC address are sent both to the legitimate user and to Evil Jimmy.

ARP Spoofing


ARP spoofing is a popular tactic that is often used in session hijacking attacks.

Page 2 of 3

Previous Page
1 2 3
Next Page

0 Comments (click to add your comment)
Comment and Contribute


(Maximum characters: 1200). You have characters left.



IT Management Daily
Don't miss an article. Subscribe to our newsletter below.

By submitting your information, you agree that datamation.com may send you Datamation offers via email, phone and text message, as well as email offers about other products and services that Datamation believes may be of interest to you. Datamation will process your information in accordance with the Quinstreet Privacy Policy.